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a b s t r a c t 

Automatic diagnosis of Alzheimer’s disease (AD) and mild cognition impairment (MCI) from 3D brain 

magnetic resonance (MR) images plays an important role in early treatment of dementia disease. Deep 

learning architectures can extract potential features of dementia disease and capture brain anatomical 

changes from MRI scans. This paper proposes an ensemble of 3D densely connected convolutional net- 

works (3D-DenseNets) for AD and MCI diagnosis. First, dense connections were introduced to maximize 

the information flow, where each layer connects with all subsequent layers directly. Then probability- 

based fusion method was employed to combine 3D-DenseNets with different architectures. Extensive ex- 

periments were conducted to analyze the performance of 3D-DenseNet with different hyper-parameters 

and architectures. Superior performance of the proposed model was demonstrated on ADNI dataset. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) has been known as one of progres-

ive neurodegenerative diseases and currently been ranked as the

ourth most common cause of death in developed countries. AD

s caused by the damage and destruction of nerve cells in brain

egions which are related to memory, and its most common

ymptoms are memory loss and cognitive decline [1] . Mild cogni-

ive impairment (MCI) is an intermediate transition between Nor-

al and AD [2] . In a recent research, 32% of patients with MCI

orsened Alzheimer’s disease within 5 years [3] . Early diagnosis

nd intervention of MCI play an important role in reducing the in-

idence of AD. Common practice of dementia diagnosis is the use

f magnetic resonance imaging (MRI) [4,5] which can create a 3D

epresentation and capture changes in the structure of the brain

hrough magnetic fields and radio waves [6] . Numerous of ma-
� This work was supported in part by Shenzhen Overseas High-level Talents In- 

ovation Funds under Grant No. KQJSCX20170331162115349, in part by National 

atural Science Foundation of China under Grant Nos. 61502473 and 61872351 , 

nd in part by the Natural Science Foundation of Guangdong Province under Grant 

016A030313176 , and Data used in preparation of this article were obtained from 

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 
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hine learning methods have been proposed for automatic recogni-

ion of dementia diseases [7–9] , in particular, deep learning shows

rominence in computer-aided diagnosis of AD and MCI [10–12] .

n the latest studies, convolutional neural networks (CNNs) have

een proved to be excellent in automatic diagnosis of cognitive

isease from brain MR images [13] . Compared with 2D convo-

utions on slices, 3D convolutions on a whole MRI can capture

otential 3D structural information which may be essential for dis-

rimination [14] . Comparatively, 3D-CNN has presented outstand-

ng performance on AD and MCI classification [15] . Due to the

omplex structure of 3D MRI and its high-dimensional features,

he 3D CNNs would be designed deeper to model high-level ab-

tractions of the data. However, performance of 3D CNNs are very

imited when the gradient information passes through many lay-

rs, because the gradient information may vanish during the for-

ard and backward propagation. In this paper, we proposed an

nsemble of 3D densely connected convolutional networks for AD

nd MCI diagnosis. Dense connections were introduced to improve

he feature utilization, then the network could be deeper due to

ess feature increment in each layer and fewer parameters. What is

ore, the ensemble approach can decrease the misrecognition risk

f selecting a single classifier and is becoming popular for medical

mage analysis [16,17] . A probability-based ensemble method was

mployed to further increase the model performance in this paper.
he main contributions are listed as follows: 

https://doi.org/10.1016/j.neucom.2018.12.018
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(1) We integrated dense connections to maximum information

and gradients flow between layers within the deep 3D convolu-

tional networks and developed the 3D-DenseNet to train the auto-

mated AD and MCI detection model. The network is easier to train

and avoids over-fitting due to its less parameters. 

(2) We presented a novel ensemble of 3D-DenseNet to boost

the performance of dementia detection model. It was constructed

by varying hyper-parameters and architecture around the optimal

values for base 3D-DenseNets. 

(3) We set sufficient experiments and analyze primary factors

affecting the performance of the 3D-DenseNet in detail. Effect of

primary hyper-parameters on model performance were demon-

strated. We revealed the important role of dense connections in

improving the performance of 3D networks. 

The rest of this paper is organized as follows. In Section II, we

review the previous machine learning and deep learning methods

for medical image analysis and dementia disease diagnosis. In Sec-

tion III, the pre-processing techniques, proposed learning frame-

work and the training strategies are introduced. The experiments

and parameter analysis of this study are presented in Section IV.

We discuss the proposed methods and conclusions of the paper in

Section V. 

2. Related works 

Precomputed medical descriptors together with statistical and

conventional machine learning methods have been widely used to

aid the classification of AD. Risacher et al. [18] calculated the hip-

pocampal volumes grey matter (GM) density, and cortical thick-

ness values from segmented regions of interest (ROI). Then voxel-

based morphometry (VBM) method was used for MRI analysis and

AD classification. Cai et al. [19] designed a 3D pathology-centric

masks to extract cerebral metabolic rate of glucose consumption

(CMRGlc), and a content-based retrieval method was proposed for

3D neurological images. Liu et al. [20] extracted 83 ROIs from 3D

brain MRI and PET scans, and proposed a Multifold Bayesian Ker-

nelization (MBK) based on a Bayesian framework to diagnose AD.

Zhang et al. [21] extracted 93 ROIs from the MRI and PET scans

using standardized templates, and the multimodal features were

combined through a multi-kernel support vector machine (SVM).

F Zhang et al. [22] used k-means clustering to build a low-level

features dictionary involving lesion metabolism index, mean in-

dex and Fisher index. Then, Probabilistic Latent Semantic Analysis

(PLSA) and Canonical Correlation Analysis (CCA) were used to com-

bine the features and capture the latent associations. 

As a popular machine-learning tool, deep learning methods

have been widely used in computer-aided diagnosis [23] . Liu

et al. [24] trained a deep neural network contained auto-encoders

to combine multimodal features which were extracted from 83

ROIs of PET and MRI scans. Li et al. [25] achieved multimodal

fusion of PET and MRI features through restricted Boltzmann

machine (RBM) and improved the classification accuracies by de-

signing a multi-task deep learning network with dropout. ROI-

based methods can significantly extract representative features and

partly reduce the feature dimension, but the ROIs are too em-

pirical to capture the larvaceous features entirely which are as-

sociated with AD diagnose. Convolutional neural networks (CNNs)

have been widely used in pattern recognition and present an out-

standing performance on AD classification through medical images.

Ciprian D. Billones et al. [26] selected 20 successive slices from

MRI, under the hypothesis that the slices cover the significant ar-

eas for the dementia detection. And each serial number of the

2D slices was used to train a 2D-CNN respectively modified from

the VGGNet. 3D-CNN can capture more complete spatial features

through its space association ability. Hosseini-Asl et al. [27] pro-

posed a 3D convolutional neural network which combines a 3D
onvolutional autoencoder pre-trained with registered images.

ayan et al. [28] built a learning algorithm by combining 3D con-

olutions and sparse autoencoders, and used it on a whole MRI.

heng et al. [29] extracted a number of 3D patches from the whole

RI and a patch transformed into features by 3D-CNN. Finally,

ultiple 3D-CNNs were used to combine the features and demon-

trated the effectiveness for AD classification. 

A successful group of approaches are proposed to relief the

hallenges which caused by enlargement of data dimension. Ju-

ior et al. [30] proposed a morphological analysis method based on

ontour feature extraction and randomized neural network model-

ng. The main advantage of this method is that the classification

ccuracy is improved by aggregating the weights of feature vectors.

ong et al. [31] fused multimodal features and developed a 3D

ose recovery multi-layer network based on non-linear mapping,

n which the recovered poses are closer to the original 2D frames

han through the linear regression. Yu et al. [32] joint the deep

NNs and the tree classifier and develop a multi-task learning al-

orithm to detect privacy-sensitive object classes from images. This

ethod achieved competitive results with respect to accuracy and

omputational efficiency. Osipov et al. [33] bound the controlled

lements with signal and proposed a dynamic space Ctime struc-

ures in RNNs, which can be used to create multi-level structure

rtificial neurons. 3D graph contains more abundant structure and

pace information and become important in this days computer vi-

ion system, but its complexity of structure makes it difficult to

e represented effectively. Wu et al. [34] proposed a convolutional

eep belief network to represent a geometric 3D shape and esti-

ate the distribution of 2D image on a 3D voxel grid. Qi et al.

35] analyzed the performance of volumetric CNNs and multi-

iew CNNs on classification tasks, and introduced multi-resolution

ltering to achieve state-of-the-art 3D classification results. This

esearch may help relief the bottleneck of 3D resolution and fur-

her improve the efficiency of 3D Convolution network. For re-

ucing data dimension and optimizing feature expression, Zhang

t al. [36] proposed an unsupervised deep-learning data dimen-

ionality reduction method named LDFA, which can learn both lo-

al and global features of the sample. The proposed local stacked

ontractive auto-encoder (SCAE) are demonstrated to improve the

erformance of the unsupervised learning. Due to the limitation

f depth, traditional neural network may not achieve well perfor-

ance when dealing with irregular data. To solve this problem, Liu

t al. [37] used a gating strategy to control information flow and

ncrease network stability, and proposed a gate-based deep net-

ork which can be deeper and extract high-level features. 

. Methods 

.1. Data acquisition and pre-processing 

In this work, we obtained neuroimaging data from the

lzheimer’s Disease Neuroimaging Initiative (ADNI) database [38] .

he study involves more than 1,0 0 0 participants including people

ith MCI, patients with diagnosed AD and normal contrasts. Most

f the participants were collected repeatedly for two to six times,

nd the interval between neighbor scans was more than a year.

ime sequence scans provide researchers with a novel discovery of

D progression. 

As shown in Fig. 1 , a total of 833 T1-weighted MRIs were em-

loyed, which were collected from 624 participants, including both

ale and female, and their ages range from 70 to 90. Since a

iven participant’s brain structure makes a difference after a pe-

iod of time, we selected two scans with the longest interval of

ne participant as different subjects, as long as the interval is

ore than three years. And when 10-fold cross-validation was em-

loyed to evaluate our models, the subjects selected from the same
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p  

t  

 

i  

h  

E  

f  

s  

i  

t  

3

a  

l  

t  

t  

c  

t  

t

x  

w  

c  

i  

o  

t  

p  

n  

3  

o  

s  

f  

m  

t

 

d  

l  

[  

f  

w  

r  

p  

t  

f  

s  

D  

t  

b  

n  

o  

e  

s

 

p  

t  

p  

i  

t  

t  

w  

h  

D  

s  

b  

F

 

m  

fi  

a  

b  

m  

o  

s  

m  

t  

{  

o  

i  

i

 

w  

l  

d  

fi  

D

P

w  

t

P

W  

fi  

f

y  

4

4

 

A  

u  

f  

e  

v  

s  
articipant were bound up and placed in a same subgroup, so that

hey were forbidden to appear both in training and testing dataset.

The selected MRIs were considered the best in the quality rat-

ngs and have undergone grad-warping, intensity correction, and

ave been scaled for gradient drift using the phantom data. Brain

xtraction Tool (FSL-BET) [39] was used to strip non-brain tissue

rom an image of the whole head, and images were aligned to the

tandardized template using FSL FLIRT [40] . The dimension of each

mage is 91 × 109 × 91 in Neuroimaging Informatics Technology Ini-

iative (NIfTI) file format. Preprocessed steps were shown in Fig. 2 .

.2. Proposed method 

Consider a traditional network comprises l layers, we denote x l 
s the output of the l th layer, and each layer implements a non-

inear transformation H l ( · ), where l indexs the layer. To boost the

raining against the vanishing gradients and improve the informa-

ion flow within the network, the DenseNet [41] implements the

onnections from a layer to all its subsequent layers. We extended

he idea of dense connectivity to 3D volumetric image processing

asks. In particular, x l is defined as: 

 l = H l ([ x 0 , x 1 , . . . , x l−1 ]) (1)

here x 0 , x 1 , . . . , x l−1 are 3D feature volumes produced in pre-

eding layers, [...] refers to the concatenation operation. Fig. 3 (a)

llustrates a dense unit. Composite function H l ( · ) consists of three

perations: a batch normalization (BN) to reduce internal covariate

ransform [42] , a rectified linear unit (ReLU) to accelerate training

rocess, and spatial convolution with k 3 × 3 × 3 convolution ker-

els to generate 3D feature volumes. The basic framework of a

D dense block is shown in Fig. 3 (b). A dense unit is regarded as

ne layer in a dense block and each layer is connected with all

ubsequent layers directly. With this dense connection mechanism,

eature utilization become more effective and fewer feature incre-

ents are added to each layer than traditional CNNs. Therefore,

he network are very narrow and has fewer parameters. 

Bottleneck layers and transition layers are also used to re-

uce parameters. 1 × 1 × 1 convolution is employed as bottleneck

ayer to reduce the input feature-volumes, before convolution layer

43,44] . After the mechanism of bottleneck layer, multichannel

eature-volumes are fused and only a small set of feature-volumes

ere added to the next layer while the preceding features are

emained. Transition layers were also introduced to further im-

rove model compactness with the hyper-parameter theta con-

rolling the degree of compression. For a dense block contains m

eature-volumes, the output feature-volumes of the following tran-

ition layer decrease to � θm � , where 0 < θ ≤ 1. Therefore, the 3D-
enseNet layers become very narrow and require fewer parameters

han traditional network, but it can perform well by making the

est use of features through dense connections. To further elimi-

ate redundancy and improve the feature expression performance

f the model, we introduce dropout between pooling layer and lin-

ar layer. The 3D-DenseNet with two dense blocks is illustrated

chematically in Fig. 3 (c). 

As mentioned above, the 3D-DenseNets with different hyper-

arameter sets appeared various architectures. We demonstrated

hat the performance of 3D-DenseNet was sensitive to its hyper-

arameters through extensive experiments in Section IV. So train-

ng with different hyper-parameters can adjust the instability of

he base 3D-DenseNets and enhance their diversity. Based on ex-

ensive experimental results with varying hyper-parameter sets,

e generated base networks with different structures by changing

yper-parameters randomly around the optimal value. All base 3D-

enseNets work independently and output the class probabilistic

core by a softmax layer. We fused their outputs by probability-

ased fusion method. The proposed ensemble model is shown in

ig. 4 . 

In traditional majority voting method, the prediction results of

ost classifiers are used as the final prediction labels. Each classi-

er is independent and the error rates between different classifiers

re irrelevant, so that the performance of the ensemble model is

etter than a single classifier. But for multi-classification tasks, this

ethod may not be very effective. Single classifiers perform well

n most subjects, but for some subjects which are difficult to clas-

ify, the error rates will increased due to the uncertainty among

ultiple categories. For example, three classifiers are considered,

he output probabilities of softmax lay for { AD, MCI, Normal } are I:

0.8, 0.1, 0.1}, II: {0.4, 0.5, 0.1}, III: {0.3, 0.4, 0.3}, respectively. Based

n the majority voting method, the prediction result is MCI. But it

s not completely correct, since the prediction result of classifier I

s more credible while the II and III has more uncertainty. 

In our approach, a simple probability-based ensemble method

as employed [45] , in which the output probabilities of softmax

ayer from base classifiers will be reintegrated. Meanwhile, the pre-

ictions of each classifier will not be ignored. In ternary classi-

cation, i base classifiers were selected, the probabilities of 3D-

enseNet i assigned to categories on testing set were: 

 

i = 

(
αi 

1 , α
i 
2 , α

i 
3 

)
(2) 

here αi 
j 

indicates the probabilities of the class j . We normalized

he P i by: 

 

i = 

P i 

max [ αi 
1 
, αi 

2 
, αi 

3 
] 

(3) 

hen outputs of m base 3D-DenseNets have been computed, the

nal class label was determined by the proposed fusion model as

ollows: 

 = arg max ( 
m ∏ 

i =1 

αi 
1 , 

m ∏ 

i =1 

αi 
2 , 

m ∏ 

i =1 

αi 
3 ) (4)

. Experiments 

.1. Data and Implementation 

833 MR subjects were used for the experiments, including 221

D subjects, 297 MCI subjects and 315 Normal control subjects. We

tilized the 10-fold cross-validation method to test the model per-

ormance. The original dataset was randomly partitioned into 10

qual sized subsamples, a single subsample was retained as the

alidation data for testing the model, and the remaining 9 sub-

amples are used as training data. The cross-validation process was
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Fig. 2. Images after each pro-pressing steps: (a) Original image; (b) image after removal of redundant tissues; (c) image after brain extraction; (d) image aligned to the 

MIN152 template. 
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Fig. 3. (a): A composite dense unit; (b): Constitution of dense connectivity with a 5-layer dense block; (c): A 3D-DenseNet with 2 blocks, the number of feature-volumes 

were changed between blocks through transition layers. 
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then repeated 10 times, with each of the 10 subsamples used ex-

actly once as the validation data. A ternary classifier (AD vs. MCI

vs. Normal) and three respective binary classifiers (AD vs. Normal,

AD vs. MCI, MCI vs. Normal) are used to report the classification

results. The subjects selected from the same participant were for-

bade to appear in both the training set and the testing set. All the

experiments were performed on a system with NVIDIA Tesla P100

GPU. 
.2. Experimental steps and evaluation 

A 3D-DenseNet was selected as base classifier for comparison

ith the ensemble method. The base 3D-DenseNet was trained

nd a series of experiments were conducted to choose optimal

yper-parameters. Subsequently, some 3D-DenseNets were gener-

ted by varying primary hyper-parameters around the selected op-

imal values randomly. Then comparison of the ensemble method
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Fig. 4. Architectures of proposed ensemble 3D-DenseNet framework for AD and MCI diagnosis. 

Table 1 

Confusion matrix of binary classification. 

Predicted positive (Class A) Predicted negative (Class B) 

Actual positive (Class A) True positive (TP) False negative (FN) 

Actual negative (Class B) False positive (FP) True negative (TN) 

Table 2 

Confusion matrix of binary classification. 

Predicted Class A Predicted Class B Predicted Class C 

Actual Class A True A ( T A ) False AB ( F AB ) False AC ( F AC ) 

Actual Class B False BA ( F BA ) True B ( T B ) False BC ( F BC ) 

Actual Class C False CA ( F CA ) False CB ( F CB ) True C ( T C ) 
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nd base classifiers was conducted to prove superiority of the en-

emble method. 

The performance of the classifiers can be interpreted from the

onfusion matrices, which record model performance across cate-

ories. The confusion matrices of binary and ternary classification

roblems are shown in Table 1 and Table 2 , respectively. The aver-

ge of 10-fold cross-validation was regared as the final results. 

The performance of each model is defined as follows: 

(a) Accuracy that indicates the proportion of correctly classified

ubjects among the whole subset, 

ccurac y bin = 

T P + T N 

T P + T N + F P + F N 

, (5) 

ccurac y ter = 

T A + T B + T C 
T + F 

. (6) 

(b) Precision that quantifies the proportion of samples correctly

lassified among the classification, 

 recisio n bin = 

T P 

T P + F P 
, (7) 

 recisio n ter−classA = 

T A 
T + F + F 

. (8) 

A BA CA s  
(c) Recall is the fraction of relevant instances that have been

etrieved over the total amount of relevant instances, 

ecal l bin = 

T P 

T P + F N 

, (9) 

ecal l ter−classA = 

T A 
T A + F AB + F AC 

. (10) 

(d) F1-score considers both the precision and recall and evalu-

te the model performance synthetically, 

 1 − score = 

2 × P recision × Recall 

P recision + Recall 
. (11) 

.3. Parametric analyses 

A series of experiments were conducted to analyze performance

f the 3D-DenseNet with different hyper-parameters sets including

epth, growth rate and compression factor. We display the testing

ccuracy and errors among the 10-fold cross-validation via box-

lots which represent the interquartile ranges. The boxes indicate

he quartiles of the dataset while the whiskers extend to show the

oints that are determined to be outliers using a method which is

 function of the inter-quartile range. 

Analysis of growth rate. We refer to the hyper-parameter k as

he growth rate of the network which indicates the number of new

eature-volumes increased at each layer. As shown in Fig. 5 , the ac-

uracy of classifiers vary significantly according to different k . The

D/MCI classifier obtains state-of-the-art result with k = 15, while

CI/Normal with k = 12. The model with k = 9 is sufficient to classify

D and Normal. As for the ternary classification task, state-of-the-

rt accuracy is achieved when k = 24. The model obtains poor ac-

uracy with small growth rate, because essential features for clas-

ification are not fully extracted. Relatively large growth rate can
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boost the performance by introducing more feature-volumes. How-

ever overlarge growth rate may decrease the accuracy, because the

complicated model is deficiently trained with limited training data.

What is more, the model with larger growth rate has smaller range

of errors, the explanation for this is that complex structure with

more parameters can improve the performance of the model. 

Analysis of depth. The depth is referred to as the total num-

ber of layers of all blocks in the 3D-DenseNet. To investigate the

impact of depth on accuracy, the model with different depth was

trained for experiments. The comparison of model performance

with different depth is shown in Fig. 6 . State-of-the-art accuracy

can be obtained to categorize AD/Normal with depth = 15, while

other classifiers obtain optimal accuracy with depth = 20. The mean

accuracy of AD/MCI is lower than others, because AD is usually de-

veloped from MCI and the anatomical shape variations captured

from MRIs are not obvious enough to identify categories. Similar

to the growth rate, the network with few layers cannot express

features adequately, so increasing depth properly can improve the

classification accuracy. But the network with overlarge depth may
btain poor accuracy, because parameters may not be fully trained

ue to limited dataset. 

Analysis of compression factor. The θ is referred to as com-

ression factor, which indicate degree of feature reduction in

ransition layers. Fig. 7 shows that the variation of compression

actor has an prominent impact on classification accuracy. The

CI/Normal and ternary classifiers obtain optimal accuracy with

 medium compression factor. The accuracy of AD/MCI declines as

increase. And the AD/Normal obtains optimal accuracy when the

odel is compressed with larger θ . Simplified network structures

an ignore irrelevant features for diagnosis of dementia disease

nd reduce overfitting in some extent. But excessive compression

f the network can lead to inadequate expression of features and

hus reduce the accuracy of the model. 

Analysis of the optimization methods. To further accelerate

he model converging and improve its performance, BP arithmetic

s mended by appending optimization methods. As we can see in

ig. 8 , the model optimized by momentum method achieved bet-

er accuracy than models with other optimizers in all classification
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Fig. 6. Comparison of different depths. 
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asks. One explanation for this is that current gradient is the ac-

umulation of previous momentum. Larger values of momentum

actor accelerate parameters update and help the model get rid of

he local minimum when gradient decreases to zero. 

Analysis of the model performance with different amount of

raining data. In order to analyze the effect of different parame-

ers on the performance of the model, different number of samples

ere used for ternary classifier training. Fig. 9 shows the mean ac-

uracy with different amount of training data, where the models

ith different fixed hyper-parameters were compared. Accuracy of

he model with fixed growth rate reduced rapidly with reduction

f training samples, while the models with fixed depth and com-

ression factor change gently. So the depth is more insensitive to

he amount of training data. In 3D-DenseNet, the growth rate fo-

uses on the number of features which are sufficient to distinguish

ategories, while the depth emphasizes expressing features with
ppropriate layers and mining the differences between features.

nd compression factors improve model compactness by reducing

he amount of feature-volumes. Dense connections reuse existing

eatures and make the information and gradients transfer effec-

ively throughout the network, so proper depth has an important

nfluence on the performance of the model. 

Analysis of model performance with dropout. Fig. 10 shows

he distribution of 10-fold cross-validation accuracy of the same

rchitectures trained with and without dropout. As discussed pre-

iously, there may exist many redundant features in the output of

he dense block, we decreased the impact of redundant features

y dropout. Dropout reduced complex co-adaptations of neurons

nd forced classifier to give up noise by dropping some units from

he network with a certain probability temporarily. Therefore, the

roposed model learned more pivotal features and prevents over-

tting by this way. 
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Analysis of parameter quantity and computation time. In or-

er to investigate the computational efficiency of the 3D-DenseNet,

e compared parameter quantities and training times of different

tructures. These were computed on a NVIDIA Tesla P100 GPU and

terated for 150 epochs with a 0.01 initial learning rate. As shown

n Table 3 , the network with a larger growth rate have more pa-

ameters and consume more time, because there are more feature-

olumes increment at each layer. The narrow but deeper network

lso has higher time complexity due to its containing more lay-

rs in each dense block and extracting more abstract features.

hat is more, the compression of transition layer can reduce pa-

ameters significantly and consume less memory, but cannot save

omputing time. This may because the channels of former collec-

ive knowledge were reintegrated, but features computing in each

ense block cannot be simplified. 

.4. Results 

For each 3D-DenseNet, we initialized weights of the model

andomly with a Gaussian distribution ( μ = 0 , σ = 0 . 01 ) . The ini-
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Table 3 

Comparison of parameter quantity and computation time with different net- 

work strucate. 

Methods Depth Growth rate θ parameters time 

DenseNet-I 30 12 1 1.3M 2h:22min 

DenseNet-II 30 24 1 5.3M 4h:15min 

DenseNet-III 30 12 0.8 0.3M 2h:26min 

DenseNet-IV 30 12 0.5 0.2M 2h:28min 

DenseNet-V 50 12 1 4.4M 6h:23min 
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p  
ial learning rate was set to 0.01, and the poly learning rate

olicy was employed to update learning rate by multiplying

(1 − iter 
max _ iter 

) power along the training iteration. Momentum method
Table 4 

The performance of 3D-DenseNets and the ensemble

Model Class A

Optimal 3D-DenseNet AD 0

MCI 

Normal 

Average of the base classifiers AD 0

MCI 

Normal 

Majority voting AD 0

MCI 

Normal 

Probability-based ensemble model AD 0

MCI 

Normal 
with batch size = 10, weight decay = 0.0 0 05 and momentum = 0.9)

as used to optimize training iteration. We carried out 10 0 0 iter-

tions for training and testing in each cross-validation. Finally, 5

ifferent 3D-DenseNets were selected as base classifiers, and the

ariation ranges of accuracy among them are within 2%. The aver-

ge of 10-fold cross-validation was regarded as the final results. 

The experimental results are shown in Table 4 . The best per-

ormance with accuracy of 97.52%, average precision of 97.13%,

verage recall of 97.0% and F1-score of 97.1% is given by the

roposed probability-based ensemble model, while the proposed

D-DenseNet produce the accuracy of 94.77% and the majority

oting method achieve the accuracy of 95.96%. From Table 4 , the

ollowing findings can be given:(1) The majority voting approach

nd the probability-based ensemble model can improve the model

erformance significantly. The fusion of multiple independent
 model on testing set for AD/MCI/Normal. 

ccuracy Precision Recall F1-score 

.9477 0.9253 0.9696 0.9469 

0.9431 0.9325 0.9405 

0.9680 0.9578 0.9628 

.9398 0.9104 0.9242 0.9172 

0.9425 0.9213 0.9317 

0.9578 0.9680 0.9628 

.9596 0.9365 0.9402 0.9383 

0.9435 0.9526 0.9480 

0.9684 0.9703 0.9693 

.9752 0.9692 0.9545 0.9617 

0.9555 0.9662 0.9598 

0.9893 0.9893 0.9893 
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Fig. 11. Confusion matrix of four classifiers. 

Table 5 

Accuracy, recall and precision for different classification methods. These re- 

sults correspond to stable MCI/AD classification. 

Methods Accuracy (%) Recall (%) Precision (%) 

Payan et al. [28] 86.84 n / a n / a 

Wee et al. [46] 79.24 78.03 80.46 

Wang et al. [47] 90.6 83.7 80.6 

Ferreira et al. [48] 81.56 85 79 

3D-DenseNet 92.20 91.12 91.68 

Majority voting 92.83 91.26 92.85 

Proposed ensemble method 93.61 92.45 94.59 
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classifiers can reduce the error rate. (2) The proposed probability-

based ensemble model outperform the majority voting method.

As mentioned above, this is mainly because the probability-based

method can cumulate category probabilities of multi base classi-

fiers and make prediction based on integrated information, rather

than select the majority result directly. 

In order to estimate generalization capability of our proposed

method, experiments were also conducted on three binary classifi-

cation tasks (AD vs. NC, AD vs. MCI, and MCI vs. Normal). Through

the ensemble 3D-DenseNet method, encouraging accuracy results

were obtained: 98.83% for AD/Normal, 93.61% for AD/MCI, 98.42%

for MCI/Normal and 97.52% for AD/MCI/Normal. In order to display
he performance of the model intuitively, the confusion matrices

f the ensemble model on one of the random cross-validation are

hown in Fig. 11 . 

Tables 5–8 show the comparisons of the proposed model with

revious methods on four classification tasks. N/A means that the

aper did not give this evaluation index. Only accuracy are showed

n Table 7 , because the positive sample can not be assigned, so

hat the recall, precision and F1-score may not appear in multi

lassification. It can be seen that our proposed probability-based

nsemble model perform best in four classification tasks with

ccuracy of 93.61% for AD/MCI, 98.42% for MCI/Normal, 98.83%

or AD/Normal and 97.52% for ternary classification. Precision and

ecall also ahead of the state-of-the-arts, despite the recall of

D/Normal slightly lower than the DemNet [26] . This may be-

ause the DemNet are more likely to recognize the uncertain sam-

les as positives (AD), so more true positives are recognized. But

ur ensemble model achieved better performance than DemNet on

ther challenging classification tasks. In addition, our proposed 3D-

enseNet also outperform the precious works in four classification

asks, with accuracy of 92.20% for AD/MCI, 94.12% for MCI/Normal,

5.12% for AD/Normal and 94.77% for ternary classification. There-

ore, it seems that the effort of dense connections takes more ef-

ective information and gradients flow. Extracting features from

 whole brain MRI and fusing probabilities of multiple classifiers
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Table 6 

Accuracy, recall and precision for different classification methods. These re- 

sults correspond to stable MCI/Normal classification. 

Methods Accuracy (%) Recall (%) Precision (%) 

Billones et al. [26] 91.67 92.22 91.11 

Payan et al. [28] 92.11 n / a n / a 

Wee et al. [46] 83.75 83.55 83.95 

3D-DenseNet 94.12 94.33 94.56 

Majority voting 95.63 93.54 94.92 

Proposed ensemble method 98.42 98.34 98.37 

Table 7 

Accuracy, recall and precision for different classification methods. These re- 

sults correspond to stable AD/Normal classification. 

Methods Accuracy (%) Recall (%) Precision (%) 

D. Cheng et al. [15] 87.15 n / a 86.36 

Billones et al. [26] 98.33 98.89 97.78 

Payan et al. [28] 95.39 n / a n / a 

Wee et al. [46] 92.35 90.35 94.31 

3D-DenseNet 95.12 94.89 95.62 

Majority voting 97.69 96.74 97.02 

Proposed ensemble method 98.83 98.70 98.70 

Table 8 

Accuracy of AD/Normal/MCI classification for 

different classification methods. 

Methods Accuracy (%) 

Billones et al. [26] 91.85 

Hosseini et al. [27] 89.1 

Payan et al. [28] 89.47 

Cheng et al. [29] 87.15 

3D-DenseNet 94.77 

Majority voting 95.96 

Proposed ensemble method 97.52 
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hrough the proposed ensemble 3D-DenseNet is an effective ap-

roach for diagnosis of dementia disease. 

. Conclusion 

In this paper, we develop an ensemble of 3D convolutional net-

orks involving dense connections to recognize AD and MCI using

rain MR images. The distinction between AD and MCI can help

o identify different categories of dementia disease and take ap-

ropriate treatments. To address the problem of limited training

ata, we introduce dense connections to 3D-CNN. Dense connec-

ions improve the information and gradients propagation through-

ut the network, then make the network easier to train due to less

arameters. Extensive comparative experiments were conducted to

nalyze the effect of parameters on performance of 3D-DenseNet.

urthermore, each base 3D-DenseNet was constructed by varying

he hyper-parameter initializations and architecture. A probability-

ased fusion method was used to combine the base classifiers. The

nsemble model achieved obvious boosting of accuracy than doing

ust the simple average of the networks predictions. The experi-

ental results demonstrate that our proposed model outperforms

he previous methods in all four classification tasks. 
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